磁翻板液位计电机

 磁翻板液位计技术解答     |      2018-03-29 17:19
现代控制策略
传统的交流磁翻板液位计电机驱动控制策略多用于被控对象模型确定、不变化且为线性,以及操作条件、运行环境确定不变的条件下。但交流永磁同步电动机动态数学模型是非线性、强耦合、时变的多变量系统,在高性能要求的场合,就必须考虑各种非线性的影响、对象的结构与参数变化、运行环境的改变以及环境干扰等时变和不确定性因素。现代控制理论的发展与应用,一定程度上弥补了经典控制理论对时变非线性随机系统无能为力的缺点。
(1)直接转矩控制
磁翻液位计原理是在20世纪80年代由德国鲁尔大学m.depenbrock教授和日本学者i.takahash分别提出的一种高性能的交流电机控制策略,其控制策略也是基于被控对象精确的数学模型,但是与矢量控制不同,它直接在定子坐标系下分析交流电动机的数学模型,无需复杂的坐标变换。
采用定子磁场定向,无需解耦电流,转矩和磁链都采用直接反馈的双位式砰砰控制,避免了将定子电流磁翻板液位计电机分解成转矩和励磁分量,直接对逆变器的开关状态进行*佳控制,着眼于转矩的快速响应,以获得转矩的高动态性能。直接转矩控制磁场定向所用的是定子磁链,不受转子参数的影响,只要知道定子电阻就可以把它观测出来,对电机参数不敏感。
直接转矩控制技术在感应电动机变频控制领域获得了成功应用,瑞典abb公司已推出系列产品。但目前在永磁同步电动机应用方面,直接转矩控制还存在着一些问题。
直接转矩控制采用磁链滞环,电机转矩存在脉动,直接影响电机运行的平稳性。直接转矩控制需要观测磁链和转矩,低速情况下准确性很差,致使电机低速运行性能差、电机调速范围较小。由于电机定子电感较小,电机启动和负载变动时电流冲击大,磁链和转矩脉动大。此外,由于电机静止时无法估算磁链初始位置,电机启动困难。尽管近些年国内外一些学者不断尝试和改进永磁同步电动机转矩直接控制策略,但目前这种控制方案很难满足交流磁翻板液位计驱动技术要求。
 
自适应控制是50年代初由考德威尔(golcl-well)提出的。它将反馈控制与辨识理论相结合,针对被控对象特性的变化、漂移和环境干扰对系统的影响而提出来的,或者当对被控过程的参数了解不多或这些参数在正常运行期间有变化,特别是存在缓慢的变化因素时,通过寻求某些性能指标*优来完成对被控对象调节的。
现在应用于控制的自适应方法有模型参考自适应、参数辩识自校正控制及其新发展的各种非线性自适应控制。模型参考自适应控制系统不需要控制对象的精确数学模型,也无须进行参数辨识。其关键问题是设计自适应参数调整律,在保证系统稳定性的同时使误差信号趋于零,主要优点是容易实现和自适应速度快。但自适应算法存在一些问题,如数学模型和运算繁琐,使控制系统复杂化。又如参数辩识和校正都需要一段时间,对于参数变化较快的系统,控制性能受系统计算速度影响较大。在交流磁翻板液位计驱动中应用系统硬件需要较高,一般采用32位数字信号处理器(dsp)或现场可编程门阵列(fpga)来实现磁翻板液位计长度如何确定呢?
(4)非线性反馈线性化控制
反馈线性化是一种非线性控制设计方法,其核心思想就是把一个非线性系统代数的转化为一个(全部或部分)线性系统,以便可以应用线性系统的技巧。它与普通线性化的根本区别在于,反馈线性化并不是通过系统的线性逼近而是通过状态变换和反馈得到的。近几年的非线性控制系统理论研究成果表明:采用非线性状态反馈和适当的坐标变换,在一定条件下,可以将一个仿射非线性系统进行精确线性化,并且这个状态反馈可保证控制系统的稳定性,且有好的动态品质。在精确反馈线性化控制方法的基础上,建立永磁同步电动机的线性化控制模型,采用反馈线性化控制后,能够实现d、q轴的解耦控制,电流跟踪性能好,力矩响应快,且速度阶跃响应能渐进收敛到给定值,无静差,超调小和过渡过程短等优点。
 
 
  在2015年对车间生产现场进行定置的基础上,2016年的这几个月来,西玛电机将 所有定置做到了细节化,人性化,同时,随着网络信息化平台的普遍推广,线圈分厂建立了自己的微信群,可在群里发布公司的*新动态,工作安排等,每个员工有 改善提案也可以直接发至群里,供大家学习和参考,这不仅可以提高员工自身的自信心,更是对分厂其他员工的一种激励和刺激,目的就是为了让员工把自己想到的 好的思路分享给大家,并付诸于实践。很显然,这种方法取得的效果非常显着,从2015年的个别人做改善到现在的全车间提改善,每个小组都活跃起来了,分厂 趁着这个氛围,在各个小组中进行了改善提案提出方法及技巧的培训,而通过改善提案实施一段时间后体现出来的效果,员工们从中发现,改善提案的提出,*终受 益者其实是自身,改善后,工作过程变轻松了,无效劳动减少了,工作环境变好了等等,而体会到这些益处后,员工就能正确认识到改善提案的裨益,从而形成一个 良性循环。